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1 Introduction

This dissertation aims to unify the discipline of spiking neural networks (SNNs) with uncer-
tainty estimation. SNNs are a type of neural network which are efficiently implementable in
hardware, operate on continuous-time data and are amenable to asynchronous distributed
training. I generate uncertainty estimates on SNNs and ask whether these uncertainty
estimates are meaningful. After implementing selected uncertainty estimation methods
on SNNs, I evaluate the performance of the resulting uncertainty-generating SNNs and
determine the practical applicability of each method.

1.1 Motivation
The machine learning models ubiquitous in the modern world are compute-heavy, difficult
to train and struggle to meet the high performance requirements of real-time applica-
tions. Spiking neural networks attempt to solve the first two of these problems by acting
on asynchronous binarised input data, which allows for power-efficient hardware imple-
mentations and asynchronous distributed training. However, like conventional artificial
neural networks (ANNs), they cannot meet the high performance requirements of real-time
applications.

Networks can be made more robust to out-of-distribution data, adversarial examples and
distribution shift by having them report model uncertainty. The naïve way of determining
when a model is uncertain (and therefore likely to be wrong) is by inspecting the prob-
abilities output by the model. This is known to fail in many cases since the probabilities
output by networks often do not align with the true probability [Guo et al., 2017]. Models
deployed in the real-world commonly face data unlike that on which they were trained due
to distribution shift; in such cases model behaviour is tantamount to ‘undefined behaviour’.
Furthermore, it is easy to generate both in-distribution and out-of-distribution images
where models output high probability predictions in an adversary-controlled manner [Good-
fellow et al., 2015; Nguyen et al., 2014]. From this, we see the probabilities output by a
model alone are insufficient to make it robust.

To make models robust, we need to know how confident a model is in its prediction. This
can be achieved by generating uncertainty estimates. This project takes the first serious
steps towards generating uncertainty estimates on SNNs. In this endeavour, I design and
train uncertainty-generating SNNs for real-world data; and empirically evaluate whether
the uncertainty estimates produced are meaningful.

1.2 Project goals
This project aims to discover how uncertainty estimation methods generalise to SNNs.
This requires taking popular uncertainty estimation methods and implementing them
on SNNs followed by a thorough evaluation to determine whether the methods are still
effective. This entails two high-level goals, both of which have been achieved.
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Goal 1: Generate uncertainty estimates on spiking neural networks

Generate uncertainty estimates on SNNs by: using dropout as a Bayesian approxima-
tion for SNNs; designing and implementing Bayesian SNNs; and using average-over-
time SNNs (extension).

Goal 2: Evaluate the quality of uncertainty estimates produced

Thoroughly evaluate the quality of the uncertainty estimates produced. Literature in
the evaluation of (or definition of) the quality of uncertainty estimates is sparse: I must
therefore invent and implement sensible evaluations. This is through a combination
of wide-ranging experiments and numeric metrics demonstrating similar behaviour to
other uncertainty-generating models.

1.3 Achievements
The project has successfully extended the field of uncertainty estimation to encompass
spiking neural networks. I have implemented all the methods outlined in the first project
goal; and performed a thorough evaluation on real-world data to achieve the second project
goal. I conclude that spiking neural networks are able to represent uncertainty; and that
their uncertainty can be estimated by using Bayesian approximations.

In Chapter 3, I implement all the outlined methods of Bayesian SNNs, dropout as a
Bayesian approximation and average-over-time SNN. I train these models on synthetic
data and use them to produce plausible uncertainty estimates.

In Section 3.5, I investigate the behaviour of conventional uncertainty-generating models
to establish which properties they have. Through this, I demonstrate in Section 3.6
that uncertainty-generating SNNs behave comparably to conventional artificial neural
networks.

In Chapter 4, I demonstrate that the produced uncertainty estimates are meaningful by
implementing them on downstream tasks and evaluating their utility.

I conclude that SNNs are able to generate meaningful uncertainty despite having only
binary internal state. This conclusion is based on similar behaviour between uncertainty-
generating SNNs and uncertainty-generating ANNs; and by demonstrating performance
on a wide range of downstream tasks which require good uncertainty estimates.
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2 Preparation

This section reviews material necessary to understand the rest of the dissertation. Section 2.1
introduces SNNs, Section 2.2 explains uncertainty and Section 2.3 reviews how to generate
uncertainty estimates. I conclude with a breakdown of the project.

2.1 Spiking neural networks
Spiking neural networks are a type of neural network which are designed to operate on
neuromorphic data (continuous time binary data) and to be efficiently implementable in
analogue hardware. These networks are based on a unique activation layer known as a
‘spike layer’ which takes binary data as input, holds real state and outputs binary data at
continuous times.

Definition 1: Neuromorphic data

Neuromorphic data is an event-based representation of continuous temporal data. For
each dimension of the input, neuromorphic data has a collection of times at which an
event happens. Intuitively, neuromorphic data takes fixed values at real times rather
than real values at fixed times.

For data with d input dimensions over time period T , each input dimension di has
a set of times {t0, t1, . . .} ⊆ [0, T ] at which an event happens. Dimensions can have
differing numbers of events.

SNN research is primarily carried out through software approximations which simulate
the computation in discrete timesteps. These approximations do not directly operate on
neuromorphic data but first discretise the set of possible times. I do the same.

Neuromorphic data X of dimensionality d is discretised by binning times. This creates
a dataset containing f frames where each frame contains data with the domain Bd. The
ith frame has value 1 at index j if and only if the input Xj spikes between time α · i and
α · (i+ 1) for some constant α.

2.1.1 Formal specification
Spike layers consist of a collection of nodes. Each node takes a sequence (x0, x1, . . .) of values
in Bd as input, combines it with intermediate state known as the ‘membrane potential’
and outputs a sequence (s0, s1, . . .). The output st ∈ B at timestep t is defined by:

st = 1ℓt≥1

where ℓt ∈ R is an intermediate value of the membrane potential and 1 denotes the
indicator function. ℓt is defined in terms of mt ∈ R, the membrane potential just before
the timestep, by:

ℓt = mt + λ · xt

mt+1 = β · (ℓt − st)

where λ ∈ Rd is the weight vector of a single node and β ∈ R is a hyperparameter called
the decay rate. Figure 2.1 visualises how the membrane potential changes with input.
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Figure 2.1: An illustration of the membrane
potential for a single spiking node φθ against its
two inputs and its output. Observe that the mem-
brane potential decays exponentially; is increased
by the dot product of the inputs with their re-
spective weights; and if the potential is above 1,
it immediately decreases by 1 and emits a spike.
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Figure 2.2: A diagram illustrating the compu-
tation of an SNN with n + 1 spike layers and
trainable parameters (θ0, θ1, . . . , θn), each hav-
ing domain Rd×d. The inputs to the network are
(x0, x1, . . . , xt), each having domain Rd; and the
outputs are (y0, y1, . . . , yt), taking values from
Bd. Outputs are aggregated to form a prediction.

Layers consist of many nodes and can be fully connected or convolutional. I denote the
function computed by a spike layer with k nodes and weights θ ∈ Rk×d by φθ. An SNN
consists of a set of such layers stacked as in any conventional ANN; the computation of
an SNN can be seen in Figure 2.2. At an implementation-level, an SNN can be thought
of as a recurrent neural network which operates on binary input data and has a unique
activation layer to ensure activations inside the network are binary.

An SNN can be used for classification between c classes by aggregating its outputs
(y0, y1, . . .) where yi ∈ Bd and interpreting the result as a probability. I use a probabilistic
interpretation known as a ‘rate coding’, where for weights w ∈ Rc×d, the logits l ∈ Rc are
given by l = wy and the predicted probability is the softmax of the logits. Loss is then the
cross-entropy of the probability and the true class.

2.1.2 Training using surrogate gradients

Since yi = 1ℓn≥1 is a step function, its derivative ∂yi
∂θ

= ∂
∂ℓi

(1ℓn≥1) · ∂ℓi∂θ
is zero (or undefined)

for all values of θ. This means we cannot directly optimise the loss if we use a rate coding.
Specifically if the loss function L depends on the outputs of the network, we can use the
chain rule to show that for any SNN, its gradient ∂L

∂θ
is zero:

∂L
∂θ

=
t∑

i=0

∂L
∂yi
· ∂yi
∂ℓi︸︷︷︸
=0

·∂ℓi
∂θ

=
t∑

i=0

0 = 0

To bypass this problem, the gradient ∂si
∂ℓi

is replaced with a surrogate gradient: the gradient
of a differentiable function similar to the step function [Eshraghian et al., 2021; Zenke and
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Vogels, 2021]. I use the derivative of arctan as a surrogate gradient for the step function
throughout the project. Its behaviour is compared to the step function in Figure 2.3.
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Figure 2.3: Comparison of arctan and its gradient to the step function. The gradient of arctan is used as
a surrogate gradient for the step function when training SNNs to make ∂L

∂θ non-zero.

2.2 Uncertainty
To understand the project, it is essential to have a precise notion of what uncertainty is,
how it can be computed, what it can be used for and how we know when we have it.

2.2.1 Defining uncertainty
We are interested in models which output two numbers: an answer and an uncertainty.

What is it? The uncertainty indicates how confident a model is in its answer. In
this project, I focus on classification and therefore consider models whose answers are
probabilities. For example, the output of an uncertainty-generating model in the binary
classification case is of the form p± y%, where y is the ‘model uncertainty’.

How do we get it? I take a Bayesian approach to generating uncertainty. This means
that I consider each model f as random and generate uncertainty on example x by producing
a sample of models F = {f1, f2, . . .} from f and computing an ensemble of predictions
Px = {f1(x), f2(x), . . .}. I report the mean of Px as the model’s overall prediction and the
sample standard deviation of Px as its uncertainty.

The pure Bayesian approach considers the parameters θ of the model f as random variables
distributed according to Θ and generates F by sampling weights i.e. fi = fθi with θi ∼ Θ.
I consider any ensemble of models F to contain uncertainty, not just those generated by
parameter randomness.

What can we do with it? Practitioners can use uncertainty estimates to determine
when models are faced with particularly difficult examples, distribution shift or adversarial
examples. This allows models to refuse to answer when they are likely to be wrong and
achieve higher performance than they would normally be able to.

2.2.2 Measuring uncertainty
The most common evaluation method in machine learning is to log some well-known
metrics and use those metrics to compare to some baseline or state-of-the-art. This is
difficult for uncertainty estimation due to a lack of well-established metrics.
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2.2.2.1 What makes an uncertainty estimate ‘good’?

Before we discuss measuring the quality of uncertainty estimates, we must understand the
abstract properties that good quality uncertainty estimates should have. After significant
thought and literature review, I propose two desirable properties. The first relates to
usability while the second relates to interpretability.

Can I use them? Uncertainty estimates are practically usable if they are meaningful
and are correlated to the actual uncertainty of the model. Intuitively, this means that if a
model outputs a higher uncertainty estimate on example a than example b, then it should
genuinely be less certain about its answer for example a.

Definition 2: Internally meaningful

A model produces internally meaningful uncertainty estimates if we can determine
which examples the model is confident on by comparing its uncertainty estimates to
each other.

Can I understand them? We can ask that the uncertainty estimates we generate
are interpretable. By defining interpretability as numerical interpretability, this can be
lower-bounded in some situations.

Definition 3: Externally meaningful

A model produces externally meaningful uncertainty estimates if we can use them to
construct explicit α% confidence intervals for probability of the form [p1, p2] where
the ‘ground truth’ probability pY |X(y | x) lies in an α% confidence interval roughly
α% of the time: P (pY |X(y | x) ∈ [p1, p2]) ≈ α.

2.2.2.2 How can we evaluate uncertainty?

There exists a gap in uncertainty literature of how to empirically evaluate the quality of
uncertainty estimates on probabilities in non-trivial or non-synthetic situations. I propose
three high-level methods for empirical evaluation.

Perfect Information In the rare situation that the labels of a dataset are probabilities
rather than classes, we can compare the confidence intervals generated by the uncertainty
estimates to the ‘truth’.

Method 1: Comparison to ‘ground truth’

The ‘quality’ of uncertainty estimates are how close they are to some ground truth
predictive distribution.

Embracing Empiricism I focus the evaluation on empiricism. Empiricism states that
uncertainty estimates are good if they perform well on a task of interest. These tasks include
differentiating between in-distribution and adversarial or out-of-distribution data.
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Method 2: Performance on a downstream task

The ‘quality’ of uncertainty estimates are their performance on a downstream task of
interest.

It behaves like uncertainty We often do not have perfect information or have a specific
task of interest. In these cases we can show that uncertainty estimates are high quality by
showing that they behave as we would expect high quality uncertainty estimates to. This
idea shares motivation with duck typing: if uncertainty estimates look good and behave
well then they are good.

Method 3: Has properties good uncertainty estimates would have

We can demonstrate that uncertainty estimates are ‘high quality’ by showing that
they behave like high quality uncertainty estimates. This behaviour includes higher
uncertainty after distribution shift or on adversarial examples.

2.2.3 Metrics for uncertainty
With the above criteria in mind, I outline several quantitative metrics which can be used
to evaluate uncertainty (directly or indirectly).

How wrong we expect to be I introduce a metric which measures how inaccurate, on
average, a model’s probabilities are. This alone does not measure uncertainty. I conjecture
that by removing the most uncertain predictions, the probabilities will improve and the
change in this metric is a proxy metric for quality of uncertainty.

Metric 1: Expected calibration error (ECE)

Given a model f and dataset {(x0, y0), (x1, y1), . . .} of size n, create m bins Bi = {xj |
i
m
≤ max f(xj) <

i+1
m
} where i ∈ N<m.

With bi as the proportion of examples in bin i, ci as the mean probability predicted
by examples in bin i and pi as the accuracy of bin i:

bi =
|Bi|
n

ci = Exj∈Bi
(max f(xj))

pi = Exj∈Bi

(
1argmax f(xj)=yj

)
I define the expected calibration error:

ECE =
n∑

i=0

bi · ∥ci − pi∥

How right we usually are Consider a metric for a model which outputs confidence
intervals for probability. The metric is the difference between the claimed coverages of
the claimed confidence intervals and their real coverages. Since datasets are not usually
labelled with probabilities, this is usually immeasurable.
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Metric 2: Expected uncertainty interval calibration error (EUICE)

EUICE is the expected difference between an α confidence interval and its coverage,
summed over α ∈ A ⊆ (0, 1]. For each α, let confintα(x) = [p1, p2] be an α confidence
interval for x. Define q(α) in terms of confintα(x) the ground truth probability p(x):

q(α) =
1

ntest

∑
xi∈test

1p(x)∈confintα(x)

Then, define:

EUICE =
1

|A|
∑
α∈A

|q(α)− α|

for A = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

2.3 Uncertainty-generating models
This section reviews the uncertainty generation methods which I transfer to SNNs. Since
no method is ‘perfect’, I review and implement all of them to establish which are most
performant for SNNs.

2.3.1 Formal introduction to Bayesian models
The Bayesian school of thought teaches that we should consider the parameters θ of a
model fθ as random variables drawn from some distribution Θ. With the parameters of fθ
as random variables, a prediction for a given input x is a sample from a random variable
Px = fΘ(x). We can create the sample S = {px,1, px,2, . . .} drawn from distribution Px by
running the network many times. The output from an uncertainty-generating Bayesian
model is the mean and elementwise sample standard deviation of S.

Theorem 1: Law of Total Probability

p(A | B) =

∫
C

p(A | B,C) · p(C | B) dC

I use the law of total probability and definition of Monte Carlo integration to prove that
if the model fθ, parameterised by weights θ, is trained on dataset D, then the sample
mean is an unbiased estimator for the posterior predictive distribution of y at x given D,
PrY |D (y;x):

PrY |D (y;x) =

∫
θ

PrY |D (y | θ;x) · PrΘ|D (θ | x) dθ LOTP

=

∫
θ

PrY (y | θ;x) · PrΘ|D (θ) dθ θ does not depend on x

All terms on the RHS of this equation are computable. Specifically, the term PrY (y | θ;x)
is the y-component of fθ(x) since y given θ is independent of D; and we can fit the
distribution PrΘ|D (θ).

A Bayesian neural network (BNN) is a network whose trainable parameters are the
parameters for the Θ-distribution PrΘ (θ). Training a BNN is equivalent to fitting the
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distribution of its parameters. Once parameters for the Θ-distribution have been fitted,
the posterior predictive distribution can be approximated by Monte Carlo sampling. Using
the definition of Monte Carlo integration, we have:∫

θ

PrY (y | θ;x) · PrΘ (θ | D;x) dθ ≈ 1

n

n∑
i=1

PrY (y | θi;x)

≈ 1

n

n∑
i=1

fθi(x)y

≈ Sy

where (θ1, . . . , θn) is a sample drawn from the distribution PrΘ|D (θ), fθ(x)y is the y-
component of the probability fθ(x) and Sy = {fθ1(x)y, . . . , fθn(x)y} is a sample generated
by running the BNN many times. The uncertainty produced by a BNN for y is the
elementwise sample standard deviation of Sy.

2.3.2 Algorithms for training Bayesian models
Training a BNN is equivalent to fitting the distribution PrΘ|D (θ). With this distribution,
we can approximate the posterior predictive distribution using Monte Carlo integration.
The only missing piece of the procedure is how to train a BNN. I now review algorithms
which are used to train BNNs.

The Old Markov Chain Monte Carlo algorithms are (usually) guaranteed to converge to
the true posterior distribution PrΘ|D in the limit. They avoid making assumptions about
the underlying distribution of θ by instead performing a random walk in a sample space of
size exponential in the number of parameters Θ and using the empirical distribution.

Algorithm 1: Markov Chain Monte Carlo (MCMC)

Initialisation Randomly sample a set of initial points. These points are ‘accepted’.

Iteration Propose a random set of ‘neighbours’ to accepted points. For each proposed
point, evaluate its performance on the training dataset. Either accept or reject it
based on its performance.

Sampling The fitted distribution can be sampled from by non-parametrically
sampling from the set of accepted points.

The New The ultimate objective when training a BNN is for the sample mean of its
outputs to approximate the posterior predictive distribution. Fitting the full Θ-dimensional
joint posterior distribution is computationally intractable for nontrivial models. To bypass
this problem, we define a surrogate predictive distribution known as a variational distribu-
tion which makes simplifying assumptions to make it trainable (such as weights being drawn
from independent distributions). The training objective now becomes maximising the sim-
ilarity between the variational distribution and the posterior predictive distribution. The
information theoretic metric of the similarity of one distribution to another distributions is
the Kullback–Leibler (KL) divergence. Therefore, we wish to minimise the KL divergence
between the variational distribution and the posterior predictive distribution. This is, once
again, incomputable. However, the evidence lower bound (ELBO) is computable and is
a constant offset from the negation of the KL divergence for a fixed model and dataset.
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Thus, we train the variational distribution by maximising the ELBO by backpropagation
and gradient descent.

Algorithm 2: Stochastic Variational Inference (SVI) [Hoffman et al., 2013]

Initialisation Given a network fθ with weights θ ∈ Rd, define trainable parameters
µ ∈ Rd and σ ∈ Rd of a variational distribution qθ which acts as surrogate to the
posterior predictive distribution p.

Iteration Compute ELBO = Ey∼qθ(·|x)

(
ln p(x,y)

qθ(z|x)

)
= ln p(x)−DKL(qθ∥p) and max-

imise by stochastic gradient-based coordinate ascent.

Sampling The fitted distribution is Θ ∼ N (µ, diag(σ2))

The Newer Explicitly parameterising the distribution PrΘ (θ) in the weights of a neural
network allows us to fit the distribution by backpropagation. This exploits gradient-based
methods to efficiently explore the parameter space. However, we must force a chosen
distribution (such as Gaussian) onto θ. Furthermore, for large neural networks we must
assume that each weight is independent of (most) other weights to reduce complexity.

Algorithm 3: Bayes by Backprop (BBB) [Blundell et al., 2015]

Initialisation Given a network fθ with weights θ ∈ Rd, define trainable parameters
µ ∈ Rd and ρ ∈ Rd.

Iteration Generate weights θ by first sampling ε ∼ N (0, I) and then setting θ =

µ+ε·ln (1 + eρ). Then for training data (x,y), compute∇µ,ρL(fθ(x),y), backpropagate
and train using gradient-based optimisers i.e. SGD or Adam [Kingma and Ba, 2015].

Sampling The fitted distribution is Θ ∼ N
(
µ, diag (ln (1 + eρ))2

)
.

2.3.3 Generating ensembles with dropout
Regularisation layers are layers which improve training behaviour. Dropout is a simple
regularisation layer which randomly zeroes nodes inside a neural network and thereby
encourages the network not to depend on any one feature too much [Srivastava et al.,
2014]. This empirically reduces overfitting.

BNNs require twice as many parameters as non-Bayesian neural networks and have a higher
compute requirement due to repeatedly sampling weights. Gal and Ghahramani noticed
that many common neural network regularisation layers (including dropout) are equivalent
to approximate Bayesian inference; enabling efficient Bayesian approximations.

I focus on dropout. Applying dropout before each weight layer is equivalent to training a
BNN which has weights drawn from a joint Bernoulli distribution. I focus my investigation
on dropout since it easily transfers onto SNNs and would be easily implementable in hard-
ware. Networks using dropout as a Bayesian approximation are trained using conventional
machine learning training algorithms.
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2.3.4 Average-over-time SNN
SNNs operate on neuromorphic data containing timesteps. The outputs of an SNN at each
timestep are aggregated to form a prediction for the whole input sequence. Average-over-
time SNNs (AoT-SNNs) attempt to exploit the timestep mechanism to produce uncertainty
in an unsound ‘non-Bayesian’, but ‘near-Bayesian’ manner.

What does it do? AoT-SNNs produce uncertainty estimates in a computationally
efficient, but mathematically unsound way. They augment an SNN with dropout (resampled
every timestep) and consider a weighted sum of the outputs at each timestep to be samples
i.e. if a network outputs yi ∈ Bd at timestep i then for some weights w ∈ Rc×d, the
prediction at timestep i will be pi = softmax(wyi) ∈ Rc. Thus, in one pass through data
with t+ 1 timesteps, an AoT-SNN produces a sample S = {p0, . . . pt}. It reports the mean
of S as its prediction with the sample standard deviation of S as its uncertainty.

Why is this not Bayesian? Although an AoT-SNN f is random and contains dropout,
it does not produce uncertainty on x by generating a sample of models F = {f1, f2, . . .}
and running them on x. This means that it does not conform to the definition of Bayesian
uncertainty as laid out in Section 2.2.1. Intuitively, spike layers pass state from one
timestep to the next. This means that the predictions after timestep t are dependent on
the prediction at timestep t and so cannot be viewed as being drawn from independent
sampled models. The correct interpretation of AoT-SNN is as a random network which
produces t probabilities when presented with an input of dimensionality Bt×d.

Why is AoT-SNN worth investigating? AoT-SNN is close to Bayesian in that
not propagating removing membrane potentials would make it Bayesian. In light of this,
Sun et al. attempt to provide empirical evidence that despite the lack of a Bayesian
interpretation, AoT-SNN does produce meaningful uncertainty and the dependent samples
do not make a practical difference. Their evaluation focuses on an empirical evaluation of
the accuracy and calibration error on a randomly sampled version of the MNIST [LeCun and
Cortes, 2010] dataset. These evaluation metrics are taken over the average of the predictions.
This means that AoT-SNNs have never been evaluated either from an uncertainty-centric
viewpoint or on ‘real’ neuromorphic data.

2.4 Requirements analysis
The project sets out to generate meaningful uncertainty estimates for spiking neural
networks. This segments into two goals: generating uncertainty estimates and demonstrating
that they are meaningful, as discussed in Section 1.2. Figure 2.4 contains a breakdown
of the components of the project. The first project goal will be achieved by generating
uncertainty on synthetic data. The second goal is achieved by the experiments on real-world
data at the bottom of the figure.

2.5 Tools and techniques

2.5.1 Software engineering tools
During the first few weeks of the project, I actively searched for tools which could be useful.
Many of the identified tools proved superfluous so were not used. The thinned down set of
tools formed a highly optimised and very efficient development environment.
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Implement and train
BSNN with MCMC

Implement and train
BSNN with SVI

Implement and train
BSNN with BBB

Compare posterior distri-
butions to true posterior

Generate uncertainty
on synthetic data

Implement DBA for SNNs Implement AoT-SNN

Hyperparameter
investigation

Generate synthetic data

Train SNN uncertainty
models on NMNIST

Spike-ify deep neural
networks for NMNIST

Investigate provisional
evaluation methods

Quantitative evaluation
on identified metrics

Evaluation of uncertainty
behaviour OOD data

Investigate uncertainty
for active learning

Implement neuromorphic
adversarial attack

Uncertainty behaviour
on adversarial examples

Investigate uncertainty
for few-shot learning

Figure 2.4: Dependency graph of the components of the project. If there is an arrow from component X

to component Y , then component Y requires the completion of component X. Red indicates high priority,
orange indicates medium priority and green indicates low priority. Dashed borders indicate extensions.
Components which are closely related are in the same blue group. All components, except active learning
are implemented. I did not implement active learning to due to sufficient results and space constraints.

Languages and Libraries Due to the large ML ecosystem in Python and my prior
familiarity with PyTorch, the project was wholly implemented in Python [Van Rossum
and Drake, 2009; Paszke et al., 2019]. Specifically, I was motivated by the Pyro library
for deep universal probabilistic programming and the snnTorch library which implements
basic components for SNNs [Bingham et al., 2019; Eshraghian et al., 2021]. I used Pytorch
Lightning to abstract away unnecessary implementation detail and ‘decouple the science
from engineering’; I used Optuna in the early stages of the project to find and build
intuition for suitable SNN hyperparameters since the literature was sparse on this; I
also used Tonic to get neuromorphic datasets; and finally used TorchMetrics for common
metrics i.e. expected calibration error [Falcon and The PyTorch Lightning team, 2019;
Akiba et al., 2019; Lenz et al., 2021; Nicki Skafte Detlefsen et al., 2022].

Logging and reproducibility I logged results, hyperparameters and seeds to Weights
and Biases [Biewald, 2020]; and enabled automatic code saving. This allowed me to
reproduce all my experiments.

Quality of Life I used Typer with Rich tracebacks to provide an easy-to-use and trivial-
to-make command line interface with readable error messages [Ramírez, 2019; McGugan
and Burns, 2019].
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2.5.2 Best practices
Code Style and Documentation I maintained a focus on readable, concise and under-
standable code. I initially made documentation conforming to the sphinx documentation
style and provided comments for complicated sections of code. Due to the research nature
of the project, complicated docstrings quickly became out-of-date as functions were modi-
fied. Accordingly, I stopped writing sphinx docstrings in favour of inline type hints and
descriptions at use-site. This was sufficient for me to return to and quickly understand
code months later. I used the yapf [Wendling et al., 2015] formatter was used throughout
the project to enforce a consistent and readable coding style.

Environments Experiments were run on several GPU servers which I ssh’d into. Each
had a dedicated Anaconda [ana, 2020] environment with Python 3.11. All environments
were set up identically.

Backups I used Git to move code from my local device to GPU servers. So, code was
necessarily backed up to Git regularly in small sections. This workflow meant that code
in the remote repository was always up-to-date and that the commits stored in WandB
always matched the code which was run. My personal laptop had files backed up to Git,
regular full backups on a second laptop and OneDrive and backed up system files with
timeshift [George, 2017].

Dissertation The dissertation was developed locally with daily Git backups. Figures
were made through tikz or matplotlib with SciencePlots [Garrett, 2021].

2.6 Licences
I plan to open source my codebase. I list the licences of all third-party libraries used during
the project in Table 2.1. Apache, BSD, MIT and PSF are MIT-compatible licences. Since
I only use tqdm through imports and the MPL licence is weak copyleft, I am permitted to
use the MIT licence provided I inform users that I use tqdm.

Licence Library

Apache Licence
pyro
pytorch_lightning
torchmetrics

BSD Licence

mpmath
numpy
sklearn
scipy
torch
torchvision

MIT Licence
optuna
rich

Licence Library

MIT Licence

scienceplots
snntorch
tabulate
tonic
typer
wandb
pytorch-cifar

MPL 2.0 Licence tqdma

PSF Licence matplotlib

atqdm is MIT licenced, but contributions
by the project maintainer are MPL licenced

Table 2.1: Table showing the licences of third-party libraries used during the project.
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2.6.1 Starting point
I was familiar both with Python and PyTorch, but had no experience with SNNs or BNNs.
My only familiarity with uncertainty estimation was from the IB Data Science course.
There are separate open source libraries for both SNNs and BNNs; however there is no
code using them in conjunction: nor did I find evidence that anyone has ever used them in
conjunction.
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3 Implementation

The heart of the project is the problem of generating meaningful uncertainty estimates
for spiking neural networks. I start by outlining the implementation in Section 3.1 and
with a repository overview in Section 3.2. The implementation begins in Section 3.3
by investigating how to train Bayesian SNNs and generating uncertainty estimates in
a simple case (Section 3.4). In Section 3.5, I investigate methods which can infer that
uncertainty estimates are not meaningful; and in Section 3.6 I prepare for the evaluation
by implementing my uncertainty-generating methods on large models, training on a large
dataset and using the methods from Section 3.5 to filter models which definitely do not
produce meaningful uncertainty.

3.1 Implementation overview
This section clarifies the implementation strategy. I take the project’s high-level goal and
decompose it into necessary yet achievable sub-goals. I connect these sub-goals back to
the project by relating them to the section where they are achieved.

Achieving the project’s high-level goal of generating meaningful uncertainty estimates on
SNNs requires generating uncertainty estimates and establishing that these uncertainties
are meaningful. This aligns with the project goals outlined in Section 1.2.

3.1.1 Generating uncertainty estimates
Bayesian SNNs are a novel and unique architecture which I define in Section 3.3.1. Since they
are novel, they have never been trained before. Training Bayesian SNNs with gradient-based
BNN training algorithms such as SVI or BBB would mean using a surrogate gradient to fit
a surrogate distribution. This double-approximation may be imprecise and make gradient-
based training algorithms ineffective. I investigate which training algorithms are able to
train Bayesian SNNs in Section 3.3.2. I perform this investigation in a two-node setting
where the Bayesian posterior weight and posterior predictive distributions are computable
by computational Bayes. This means there is a ground truth to compare against.

I implement all the uncertainty-generating methods on SNNs and investigate their behaviour
on a synthetic dataset in Section 3.4. Then, in Section 3.4.1, I formally define how to use
dropout as a Bayesian SNN approximation and define an AoT-SNN. With this knowledge,
I can implement spiking multilayer perceptrons which employ these methods and train
them on a simple synthetic dataset in Section 3.4.2. I then achieve the first project goal
by using these models to generate uncertainty estimates. In preparation for training larger
models, the section concludes with a sensitivity analysis in Section 3.4.3 where I investigate
the relative hyperparameter importances.

3.1.2 Demonstrating meaning
I require a method to provisionally evaluate the quality of uncertainty estimates during
my implementation. However, there is a gap in the literature on empirical methods
for evaluating the quality of uncertainty estimates. In Section 3.5, I investigate how to
provisionally evaluate uncertainty estimates by working in a perfect-information setting and
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comparing the conclusions drawn through different methods to a ground-truth. Through
this, I find several key properties common to models producing meaningful uncertainty
estimates. In Section 3.6, I use these properties to quickly discount models which definitely
do not produce meaningful uncertainty estimates.

To determine that my methods are able to produce meaningful uncertainty, I must apply
them to large models and investigate their behaviour on a large dataset. In Section 3.6, I
do the first part of this: applying my methods to large models, training them on many
values of the sensitive hyperparameters identified in Section 3.4.3 and using the provisional
comparison methods from Section 3.5 to determine which models are most likely to produce
meaningful uncertainty. I achieve the second project goal in Chapter 4 by evaluating the
uncertainty estimates these networks produce on downstream tasks.

3.2 Repository overview
A directory tree showing the main components of the repository is given in Figure 3.1.

Directory Description LOC
snn_uncertainty/..................................................Main codebase 12371

exploration/................................................Exploratory code 3537
experiments/......................................Experiments and training 6122

bsnn_training/........................Training Bayesian SNNs (§3.3.2) 660
mwe/.....................................Minimal working examples (§3.4) 388
metrics/...................................Investigation of metrics (§3.5) 1391

cifar10/............................Uncertainty on CIFAR10 (§3.5.2) 770
synthetic/..................................Metrics on synthetic data 621

nmnist/......................................NMNIST experiments (§3.6) 3197
train/...................................NMNIST training code (§3.6) 909
metrics/...........................Provisional evaluation code (§3.6) 299
ood/...........................................OOD experiments (§4.1) 1005
adv/....................................Adversarial experiments (§4.2) 782

kshot/................................................k-shot learning (§4.3) 396
utils/...................................................................Utilities 924

datautils/...........................Dataloaders for neuromorphic data 602
layers/.............................Custom dropout and Bayesian layers 164

models/......................................................Models definitions 1788

Figure 3.1: A directory tree for the main components of the repository, with the filenames on the left
and descriptions and lines of code in each directory on the right.

I used 146 lines of open source (MIT Licence) model architecture definitions (ResNet18,
MobileNetV2 and VGG16) from the github repository pytorch-cifar, corresponding
to roughly 1% of the source code in my project. I wrote all code pertaining to spiking
neural networks, Bayesian neural networks or uncertainty estimation; and all code in the
repository other than those 146 lines of architecture definitions.

Since the project grew larger than expected, exploration and many early experiments did not
make it into the dissertation. These investigated properties of uncertainty-generating SNNs
in synthetic situations and were superseded by experiments on NMNIST in Chapter 4.

https://github.com/kuangliu/pytorch-cifar
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3.3 Bayesian spiking neural networks are trainable
In this section, I transfer the most mathematically well-founded and well-known method
of extracting uncertainty estimates from neural networks onto SNNs. This involves making
the first implementation of a Bayesian SNN. Due to this novelty, there is no empirical
evidence that standard BNN training algorithms will remain effective at training them.
I therefore define minimal Bayesian SNNs and empirically verify that the algorithms
discussed in Section 2.3.2 are able to train them.

3.3.1 Mathematically formalising Bayesian SNNs
A Bayesian SNN (BSNN) is a neural network composed of Bayesian spike layers, which
are spike layers (Section 2.1.1) where the weights are not constants, but random variables
sampled from a trainable distribution at the first timestep. A visualisation of Bayesian spike
layers can be seen in Figure 3.2, which shows an n-depth spiking multilayer perceptron
acting on an input with 3 timesteps. Notice that weights are shared between timesteps.
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Figure 3.2: Visualisation of a BSNN acting on an input with 3 timesteps. Time flows downwards and the
forward pass moves to the right. Bayesian layers are shaded blue, while spiking layers are shaded green.
Weights are sampled once per layer and then shared across all timesteps. The outputs from each timestep
are aggregated to form a prediction.

3.3.2 Modern training algorithms are effective at training BSNNs
Machine learning practitioners choose training algorithms based almost exclusively on
their previous performance on similar problems. A BSNN is a unique architecture with
significant differences to conventional BNNs. This means that the empirical evidence of
an algorithm being effective at training conventional BNNs does not guarantee that this
algorithm will also be effective at training BSNNs. Gradient-based algorithms applied
to BSNNs would use a surrogate gradient to fit a surrogate distribution. The surrogate
gradient and variational distribution approximations may not be orthogonal and may
interfere with the validity of each other.
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The approach In this section, I investigate three training algorithms and determine
which, if any, are able to train BSNNs. I consider MCMC, SVI and BBB. I start by
performing a preliminary investigation in a two-node setting. This setting is carefully
designed such that the posterior distributions PrΘ|D and PrY |D(y;x) can be easily computed.
I then implement a Bayesian spiking multilayer perceptron and establish how well the
candidate algorithms perform in this scenario. At this stage, I use real data (i.e. ∈ Rd)
(rather than neuromorphic data) to obtain more interpretable results.

Dataset 1: Binary Classification Dataset

Let the datasetD contain 100 examples, where each example ((xi,0, xi,1, . . .), yi) consists
of 50 datapoints xi,j ∈ R and a class yi ∈ B. Examples are generated according to the
following procedure:

yi ∼ Bernoulli(0.5)

xi,j ∼ N (λi, σ
2)

where λi is the mean of xi and is normally distributed with standard deviation 0.2

and class-dependent mean µyi for (µ0, µ1) = (−0.3, 0.4):

λi ∼ N (µyi , 0.2
2)

I use a two-node BSNN with two weights w0 and w1, which outputs two spike trains
s0, s1 ∈ B50. I use the simple probabilistic interpretation that the predicted probability of
class 1 is given by ∥s1∥

∥s0∥+∥s1∥ . This network is trained using MCMC (with the No-U-Turn-
Sampler [Hoffman and Gelman, 2014]), SVI and BBB. All algorithms are initialised with
weights w0, w1 distributed according to the unit normal, N (0, 1).

The posterior distribution of the weights after training this network is given in Figure 3.3.
Notice that all algorithms converged to similar approximations of the weights, however
MCMC converged to a much looser approximation. In Figure 3.4, I visualise the posterior
predictive distribution of the models after being trained with each training algorithm.
All models converged to suitable approximations of the Bayesian posterior predictive
distribution, but SVI and BBB converged to better approximations than MCMC.

These results suggest that SVI and BBB are not disrupted by the surrogate gradient
approximation present in BSNNs. However, MCMC is struggling to train a two-node
BSNN. Since MCMC does not exploit gradient information, it scales poorly. For these
reasons, I conclude that MCMC is unlikely to be effective in a high-dimensional space and
disregard it as a possible BSNN training algorithm.

3.4 All methods generate plausible uncertainty
Now that I have shown that it is possible to train BSNNs, I investigate whether SNNs
actually have uncertainty through a minimal working example. The binary activations
inside SNNs could conceivably discretise uncertainty or negate any stochasticity in the
network, rendering attempts to extract uncertainty futile. This concern must be remedied
before testing on non-synthetic data, where issues may be down to any number of variables.
I therefore devise an easily visualisable dataset which contains regions with differing levels
of probability and uncertainty.
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Figure 3.3: A comparison of the posterior distribution of the weights learnt via different training algorithms
to the Bayesian posterior distribution. Observe that SVI and BBB converged to close approximations of
the Bayesian posterior; while MCMC converged to a poor approximation.
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Figure 3.4: Comparison of the Bayesian predictive posterior distribution (PPD) to the PPDs from
models trained with MCMC, SVI and BBB. All algorithms learnt sensible approximations. However, the
PPD learnt by MCMC was furthest from the Bayesian PPD.

3.4.1 Mathematically formalising DBA for SNNs and AoT-SNNs
The rest of this chapter uses all four uncertainty-generating models. Accordingly, I show
how an SNN can use dropout as a Bayesian approximation (DBA) in Figure 3.5a. Dropout
layers are applied before every weight layer (except the input).

Figure 3.5b visualises the computation of an AoT-SNN. Notice that samples generated for
each input (x0, x1, . . .) are not independent. This means that AoT-SNN takes the mean of
a dependent, non-identically distributed set of samples.

3.4.2 Spiking multilayer perceptrons produce sensible uncertainty
By generating uncertainty estimates on a synthetic dataset, I achieve the first project goal
in this section. I use spiking multilayer perceptrons and a synthetic binary classification
dataset. The dataset is designed such that different regions should have all combinations
of low/high and low/high predictive probability.
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(a) Diagram of an SNN using dropout as a Bayesian approximation. Spiking layers are green, while layers
required for DBA are red. Each mask mi ∈ Bd is drawn from a multidimensional Bernoulli distribution
once, elementwise multiplied with the output of the ith layer and re-used for all timesteps. Uncertainty
estimates are generated by running the whole network many times and considering the sample standard
deviation of its outputs.
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(b) Diagram of an average-over-time SNN. Spiking layers are green, while layers specific to average-over-
time SNN are cyan. Dropout is re-taken each timestep and elementwise multiplied with the output of the
ith layer at that timestep. The outputs at different timesteps are not i.i.d. and do not have a Bayesian
interpretation (see Section 2.3.4). We take their sample standard deviation as uncertainty.

Figure 3.5: A comparison of DBA for SNNs and AoT-SNN.
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Dataset 2: 2D overlapping dataset

Let the dataset D = {((x0;0, x0;1, . . .), y0), ((x1;0, x1;1, . . .), y1), . . .} where yi ∈ B is
generated according to the following distribution:

yi ∼ Bernoulli(0.5)

and xi,j is generated according to:

xi,j ∼ N (µyi ,Σyi)

where the means µ0, µ1 and the covariances Σ0, Σ1 are:

µ0 =

[−1
−1

]
µ1 =

[−1
−1

]
Σ0 =

[
1 0.5

0.5 1

]
Σ0 =

[
2 0.5

0.5 2

]
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Figure 3.6: Visualisation of the predictive probabilities and uncertainties for uncertainty-generating
spiking multilayer perceptrons using different methodologies on a 2D dataset of size 50. Models have 3
hidden layers of width 32 and were trained for 50 epochs with hyperparameters finetuned for cross-entropy
loss. All models converge to plausible solutions. All models also converged to solutions with high probability,
low-uncertainty regions in which there was no data, potentially allowing adversarial examples.

Achieving the first project goal We see in Figure 3.6 that all models were able to
converge to plausible solutions. By generating uncertainty estimates on SNNs, I have now
successfully achieved the first project goal.

3.4.3 BSNNs are very sensitive to hyperparameters
To build intuition for the interaction between SNNs and uncertainty-generating networks,
I run a sensitivity analysis to determine which hyperparameters have the largest effect
on performance. Through this, I pre-emptively solve hyperparameter problems before
scaling up to larger datasets where a thorough exploration would be computationally
infeasible.
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For each model, I used Optuna [Akiba et al., 2019] to run a hyperparameter by training 250
models with the objective of minimising the cross-entropy loss on the 2D binary classification
dataset. I investigated the dropout probability p, the initial standard deviation of the BSNN
weights σ0, initialisation strategies for BSNN means µ, the decay rate β (Section 2.1.1),
the learning rate and the number of timesteps. Hyperparameters were discretised to reduce
the search space. I show the relative hyperparameter importances in Table 3.1.

Relative Importances

Network Impact on Loss p σ0 µ β learning_rate num_steps

BSNN + SVI High - 0.839 0.048 0.042 0.056 0.015

BSNN + BBB High - 0.996 0.000 0.003 0.001 0.000

DBA Low 0.837 - - 0.012 0.109 0.042

AoT-SNN Low 0.195 - - 0.018 0.778 0.010

Table 3.1: Table shows the relative importances of hyperparameters on cross-entropy. SVI requires a very
high initial standard deviation σ0; and BBB requires a very low initial standard deviation σ0 to achieve
good performance. DBA and AoT-SNN are insensitive to differing dropout probabilities p.

I find that BSNN initialisation of σ has a large impact on convergence. All other networks
are relatively insensitive to all other hyperparameters. With this in mind, when I scale to
larger datasets, I choose sensible arbitrary values for unimportant hyperparameters and
explore options for the important hyperparameters.
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Figure 3.7: Visualisation of the predictions and uncertainties for uncertainty-generating spiking multilayer
perceptrons arbitrary hyperparameters. Notice that both SVI and BBB struggled to train the BSNN.

Figure 3.7 visualises the sensitivity of methods to their hyperparameters. It shows the
posterior predictive distributions learnt by each model if the most important hyperpara-
meters are replaced with intuitive, non-finetuned values. AoT-SNN and DBA converged to
sensible uncertainties for all hyperparameter configurations.
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I draw two conclusions from this sensitivity analysis: BSNNs are highly sensitive to σ0; and
all models are insensitive to SNN-specific hyperparameters (decay rate β and num_steps).
With this knowledge, I can pre-empt hyperparameter issues and focus later investigation
into hyperparameters which are most likely to be problematic.

I am now able to choose which BSNN training algorithm to use for the rest of the project.
In Figure 3.6, we saw that SVI converged to a solution with low predictive probabilities
even in areas of high density. This indicates that SVI was struggling to train networks even
in low-dimensional spaces. I believe that an algorithm struggling in a thousand-dimensional
space will be ineffective in a million-dimensional space. Since SVI suffers from the same
hyperparameter sensitivity as BBB, it seems preferable to train BSNNs through BBB. For
these reasons, I train subsequent BSNNs through BBB.

3.5 Deriving uncertainty estimation properties on ANNs
With the first project goal achieved, the remainder of this chapter lays the groundwork for
achieving the second project goal of evaluating the quality of the uncertainty estimates
produced by BSNNs, DBA on SNNs and AoT-SNN. In this section, I hypothesise properties
that uncertainty-generating models should have. These properties should be model-agnostic.
We know how to produce meaningful uncertainty estimates on ANNs, so I investigate
whether ANNs which produce meaningful uncertainty have these properties. I then propose
quantities which measure these properties and allow me to provisionally determine whether
models are likely to be meaningful. I later use these to quickly filter out models which are
unlikely to produce meaningful uncertainty estimates.

3.5.1 A hypothesis on the behaviour of uncertainty estimates
If a model outputs a probability and an uncertainty, then we want the probability to be
better for examples with lower uncertainty. ECE is a widely accepted proxy metric used
to measure how good the probabilities output by a model are (see Section 2.2.3).

The hypothesis I hypothesise that if a model generates internally meaningful uncertainty
estimates, then the ECE of low uncertainty examples will be lower than the ECE of examples
with high uncertainty.

We can visualise the interaction between ECE and uncertainty by plotting a curve of
ECE against coverage based on uncertainty estimates. For a dataset of size n, I order the
datapoints by increasing uncertainty and plot the ECE of the first c · n datapoints as a
function of c ∈ (0, 1]. This curve is computable on datasets whose labels are the ground
truth classes: the common case.

I propose two quantitative measures to apply to this curve which I hypothesise will be
meaningful estimators for the quality of uncertainty. The first is ECE ratios: for some
coverage c, I hypothesise that the ratio ECE@c/ECE@1 will measure how much better
the probabilities below coverage c are than typical probabilities. Secondly, I hypothesise
that the area under calibration curve (AUCC) will be meaningful: equivalent to a sum
of how ‘good’ probabilities are weighted inversely proportionally to their uncertainty.
AUCC heavily penalises low quality probabilities at low c. Finally, note that if the ECE
vs coverage curve often has a negative gradient, then the uncertainty estimates produced
are not internally meaningful.
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3.5.2 The core hypothesis holds on ANNs for CIFAR10
To empirically verify the hypothesis that models which produce meaningful uncertainty
estimates have low ECE for examples with low uncertainty, I test many models on a
real dataset and compare the true quality of their uncertainty estimates. Furthermore, I
visualise their ECE vs calibration curves and establish whether the gradient is positive at
all points.

Verifying this hypothesis requires having models which produce meaningful uncertainty
estimates. I avoid bootstrapping by working in a perfect-information situation and using
the CIFAR10-H probabilities to compute EUICE. EUICE is a mathematically sound
aggregate measure of how externally meaningful uncertainty estimates are.

Dataset 3: CIFAR10-H

The CIFAR10-H [Peterson et al., 2019] labels for the CIFAR10 [Krizhevsky and
Hinton, 2009] test dataset are human predictive probabilities generated by crowd-
sourcing 500, 000 human classifications for all 10, 000 test images. These probabilities
approximate the human posterior predictive distribution: the distribution from which
the original CIFAR10 labels were sampled.

To verify that models which produce meaningful uncertainty estimates have lower ECE for
examples with low uncertainty, I train a twelve ANNs on the CIFAR10 dataset and generate
uncertainty estimates from them. I do this by using dropout as a Bayesian approximation
with three different architectures, four amounts of dropout and either conventional dropout
or spatial dropout [Tompson et al., 2015]. With these 12 models, I inspect the ECE against
coverage curves to determine whether they have positive gradient and whether EUICE is
related to the metrics I proposed.

Model Dropout Accuracy ↑ ECE ↓ EUICE ↓ AUAC ↑ AUCC ↓

ResNet18

0.01 91.6 0.0497 0.243 98.9 0.0093

0.1 90.3 0.0132 0.213 98.3 0.0046

0.2 92.3 0.0060 0.175 98.9 0.0019

0.5 80.3 0.0699 0.325 92.1 0.0369

VGG16

0.01 88.5 0.0291 0.270 97.8 0.0093

0.1 88.2 0.0388 0.224 97.3 0.0133

0.2 85.3 0.0800 0.264 95.1 0.0361

0.5 56.0 0.1010 0.480 55.6 0.1050

MobileNetV2

0.01 87.9 0.0214 0.443 97.5 0.0080

0.1 82.9 0.0282 0.468 95.2 0.0145

0.2 70.1 0.0809 0.484 87.4 0.0497

0.5 14.2 0.3023 0.505 18.1 0.3085

Table 3.2: Table containing the performance of different models on various metrics. Metrics correlated
with EUICE are likely to be good proxy metrics. AUAC is the area under the accuracy curve.
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I find that EUICE is uncorrelated to the area-under the ECE curve – or the ECE at
any particular point. This result is similar to Galil et al., who observed that the relation
between ECE and other metrics (in this case EUICE) is architecture-dependent and does
not generalise well. I do not have enough models or architectures to draw such a conclusion,
but my experiments support it: there seems to be a positive correlation between EUICE and
AUCC for ResNet18; with EUICE and AUCC having weaker relationships for VGG16 and
MobileNetV2 [He et al., 2016; Simonyan and Zisserman, 2015; Sandler et al., 2018].
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Figure 3.8: Graphs showing the selective accuracy and expected calibration error at different coverages
for three ANN architectures generating uncertainty using DBA. The third graph shows the confidence
interval calibration, which we want to be linear. All performant models had positive ECE against coverage
curves. This validates my hypothesis that if a model produces internally meaningful uncertainty then its
ECE is low for examples with low uncertainty.

Observe in Figure 3.8 that performant uncertainty-generating models had positive gradients
at all points on their ECE against coverage curves. I can use this observation to easily
recognise many models which do not produce meaningful uncertainties. Of particular interest
is the note that the ECE of all models which produced ‘good’ uncertainty estimates is
almost 0 below 0.5 coverage. Thus, I take the ratio ECE@0.5/ECE@1 as an approximate
measure of how internally meaningful the uncertainty estimates are.
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3.6 Uncertainty estimates from SNNs have properties
of meaningful uncertainty

In order to establish that BBB, DBA and AoT-SNN generate meaningful uncertainty
estimates, I must investigate their behaviour on a real dataset. Scaling up to a large dataset
requires using larger models. To meet these requirements, I train spiking ResNets on the
NMNIST dataset.

3.6.1 Introducing the NMNIST dataset
I require a dataset small enough for training many models to be computationally feasible,
yet large enough to produce meaningful results. The NMNIST [Orchard et al., 2015]
dataset is the smallest neuromorphic image dataset, and meets these requirements well.
NMNIST is of size 50 × 60000 × 2 × 34 × 34: making it 150 times larger than MNIST
(6000× 1× 28× 28) and 37 times larger than CIFAR10 (60000× 3× 32× 32).

Dataset 4: NMNIST

The NMNIST dataset is neuromorphic data generated by taking a neuromorphic
sensor and passing it images of the original MNIST dataset. The NMNIST dataset is
a set of positions and timestamps of the form (c, x, y, t), where (c, x, y, t) ∈ NMNIST,
indicates that the neuromorphic sensor observed an event at time t, of type c at
position (x, y).

To use the data in a software simulation, it is binned into T timesteps leading to a
dataset of size [T, 60000, 2, 34, 34]. I visualise this in Figure 3.9.

Figure 3.9: Figure visualising random examples from the NMNIST dataset at random timesteps. Different
rows contain different examples while different columns contain different timesteps. Neuromorphic sensors
can sense two types of events (ON and OFF) which are represented through channels. These channels are
visualised as colours, but are not colours.

Like many sequence-to-sequence models, SNNs backpropagate through time. This means
that gradients depend on previous timesteps and require an amount of memory linear in
the number of timesteps. During the project, I was limited by GPU RAM. I alleviated, by
limiting the number of timesteps T to 50.
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3.6.2 Constructing uncertainty-generating Spiking ResNets
To work with a dataset 37 times larger than CIFAR10, I must implement the methods
discussed on large networks. In Section 3.5 we found that the relationship between ECE and
EUICE was model-dependent and seemed strong for ResNets. Based on this, I spike-ify and
implement the uncertainty-generation methods on the ResNet18 architecture. Figure 3.10
provides an overview of this process.

ResNet18

Spiking ResNet18 for NMNIST

Dropout as a Bayesian spiking
ResNet18 Approximation

Bayesian spiking
ResNet18 for BBB

Average-over-time
spiking ResNet18

Resize convolutions and replace
activations with spike layers

Replace weight layers with
Bayesian weight layers

Use timestep-wise loss function
and reset dropout each timestep

Add spatial dropout layers
before every weight layer

Reset spatial dropout
only on the final timestep

Figure 3.10: Diagram showing the modifications which had to be made to a vanilla ResNet18 to make
the uncertainty-generating spiking ResNets used in the latter half of Chapter 3 and throughout Chapter 4.

From ResNet18 to spiking ResNet18 I convert a vanilla ResNet18 into a spiking
ResNet18 by replacing all activations with spiking layers and iterating over the time
dimension. This network now operates on data of size T ×B × 3× 32× 32; but NMNIST
has dimensionality T ×B×2×34×34. I therefore adjust the padding and number of input
channels in the first convolution such that it operates on data of the correct size.

Bayesian spiking ResNet18 To convert from a spiking ResNet18 into a Bayesian Spik-
ing ResNet18, I sample weights from a trainable variational distribution. The parameters
of the network are now the parameters of the variational distribution. I use the method
described by Blundell et al. [2015].

Dropout as a Bayesian spiking ResNet18 approximation To convert the spiking
ResNet18 to use the method of DBA, I place spatial dropout layers before each weight
layer and reset them only after all timesteps have been processed.

Average-over-time spiking ResNet18 I convert the spiking ResNet18 into an AoT-
SNN by placing dropout layers before each weight layer, resetting them every timestep and
considering the output at each timestep as a different prediction during training.

3.6.3 SNN uncertainty estimates have desirable properties
This section focuses on training the uncertainty-generating SNNs from Section 3.6.2
on the NMNIST dataset and demonstrating that they have the properties identified
in Section 3.5.
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In Section 3.4.3, I found that each model is sensitive to one hyperparameter: for BBB, the
initial standard deviation σ0; for DBA and AoT-SNN, the dropout probability p. As such,
I choose to train models on several values of their sensitive hyperparameters. I use the
metrics identified in Section 3.5 to decide which models to use in the evaluation

A baseline SNN converged within 2 epochs. I therefore give my networks 2 epochs to train
since practitioners will not generate uncertainty estimates if doing so requires a much
larger training compute budget. I found that models were bimodal and either converged
quickly or would take many epochs to converge.
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Figure 3.11: The ECE of models trained using each of the regimes with different dropout probabilities p

and initial standard deviations σ. BSNNs trained with BBB are by far the best-calibrated models.

Observe in Figure 3.11 and Table 3.3 that for all models which converged (i.e. achieved
performance comparable to the baseline), the gradient of the calibration curve was positive.
This indicates that the ECE is related to the uncertainty. Of particular note are BSNNs
trained with BBB which are significantly better calibrated than the other methods. AoT-
SNN produced uncertainty estimates and even beat the baseline on accuracy, but had a
greatly elevated ECE and has a weaker relation between uncertainty and ECE.

Summary In this section, I achieved the first project goal of generating uncertainty
estimates on SNNs. I also achieved one of the extensions by implementing AoT-SNN. I
have now laid the groundwork for rigorous evaluation to determine whether the uncertainty
estimates produced are meaningful.
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Method Dropout p Initial σ Accuracy ↑ ECE ↓ AUCC ↓ ECE50/ECE ↓ ECE80/ECE ↓
Baseline - - 95.9 0.0405 - - -

DBA

0.01 - 86.1 0.0265 0.01291 0.429 0.956

0.1 - 95.7 0.0365 0.01082 0.163 0.546

0.25 - 96.2 0.0385 0.01071 0.155 0.513

0.5 - 91.6 0.1031 0.05372 0.471 0.832

AoT-SNN

0.01 - 18.3 0.5578 0.57166 1.187 1.093

0.1 - 77.0 0.1633 0.10977 0.645 0.670
0.25 - 87.2 0.2310 0.13833 0.600 0.866

0.5 - 95.3 0.2647 0.16974 0.673 0.881

BBB

- 1e−4 95.7 0.0139 0.00402 0.198 0.415

- 1e−3 95.3 0.0052 0.00092 0.030 0.204

- 1e−2 86.6 0.0131 0.00534 0.165 0.855

- 1e−1 10.4 0.1856 0.16668 0.912 0.967

- 1e+0 10.2 0.1231 0.07986 0.687 0.823

Table 3.3: Tables demonstrating the performance of models on each of the metrics identified for different
hyperparameter values. BSNNs trained with BBB are the best-calibrated and have high correlation between
miscalibration and uncertainty. DBA achieved high performance and had performed well on the proxy
metrics. Models generating uncertainty through AoT-SNN only appeared to have a weak relation between
uncertainty and ECE. Furthermore, they had higher calibration error than the baseline.
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4 Evaluation

This section answers the second question of the dissertation: are the uncertainty estimates
I produce meaningful? I conclusively establish that the uncertainty estimates generated by
BBB and DBA are meaningful while those generated by AoT-SNN are not. In Section 2.2.2,
I identified three methods of evaluating uncertainty. I investigated the first in Section 3.6,
so this section focuses on the remaining two: performance on a downstream task and
demonstrating properties that good uncertainty estimates have.

The downstream tasks of interest in this section are out-of-distribution detection, adversarial
example detection and k-shot learning. These evaluate the robustness of the trained models.
The properties which I investigate are whether the uncertainty on out-of-distribution or
adversarial examples is higher than in-distribution; and whether uncertainty decreases as
the amount of training data increases.

4.1 Uncertainty increases on out-of-distribution data
I now investigate the behaviour of uncertainty-generating SNNs on out-of-distribution
(OOD) data. I explore how their uncertainty changes between in-distribution and OOD
data, and investigate whether the uncertainty I produce can be used to differentiate between
in-distribution and OOD examples.

4.1.1 Introducing the OOD datasets
There are two broad types of OOD detection: ‘near OOD’ and ‘far OOD’. Near OOD data
is drawn from a similar distribution to the original dataset, while far OOD is drawn from
a completely different distribution. I consider one near OOD task and two far OOD tasks.
The near OOD dataset is NMNIST with added salt-and-pepper noise (random bit-flips)
parameterised by probability p. The first far OOD dataset is random noise parameterised
by bit-flip probability q. The second far OOD dataset is a different neuromorphic dataset
with non-overlapping classes. They are visualised in Figure 4.1.

(a) NMNIST images (b) Noisy images,
. p = 0.02

(c) Random images,
. q = 0.05

(d) NCaltech images

Figure 4.1: Examples from the original dataset compared to the OOD datasets. Visualisation explained
in Figure 3.9.

Why Near OOD? Near OOD datasets have similar characteristics to in-distribution
data. My near OOD datasets are made my adding noise to NMNIST and contain semantic
information. This is the more difficult case of OOD detection since models can sometimes
recognise features and may produce meaningful answers.
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Dataset 1: Noisy Dataset

Generate noisy data D′ according to the following process:

D′
t,c,y,z = Dt,c,y,z ⊗ Bernoulli(p)

Where D are data in the original test set, ⊗ denotes exclusive or and p ∈ [0, 1] is the
bit flip probability.

Why Far OOD? Far OOD data is dissimilar to the data a model was trained on. These
datasets have little or no semantic information, making it impossible for models to produce
meaningful predictions on them. My first far OOD dataset is pure random data.

Dataset 2: Random Dataset

Generate random data D′′ according to the following process:

D′′
t,c,y,x = Bernoulli(q)

Where q ∈ [0, 1] is the bit-flip probability.

Why NCaltech101? By adding a dataset with semantically meaningful information
and complex patterns which was drawn from a different distribution, we can see how the
uncertainty estimates behave in a completely different distribution without any noise.
The limitation is that we are unable to observe how the uncertainty behaves in-between
NMNIST and NCaltech101 [Orchard et al., 2015].

Dataset 3: NCaltech101

This is a neuromorphic dataset generated by sensing the images in the Caltech101 [Fei-
Fei et al., 2007] dataset with a neuromorphic sensor. This dataset contains 101 classes.

4.1.2 BBB and DBA are uncertain on noisy data
The noisy NMNIST datasets contain semantic information about the original classes.
As the bit-flip probability p increases, the dataset becomes corrupted and the amount
of information about the original class decreases. I therefore expect the uncertainty to
increase as p increases. Good uncertainty estimates would have low uncertainty for low p

and increase as p increases until some threshold at which the uncertainty saturates. At
this threshold, the model is unable to extract any information from its input.

For each uncertainty-generating model and noisy dataset with bit-flip probability p ∈
{0, 0.1, . . . , 0.2}, I produce uncertainty estimates on 1000 examples. I plot the distribution
of their uncertainty in Figure 4.2.

Notice in Figure 4.2 that the uncertainty of Bayesian methods increases as p increases.
Importantly, their median uncertainty is roughly proportional to the difference between
mean predictive probability, ŷ(x), and classification accuracy. This indicates that the BBB
and DBA models are producing meaningful uncertainty estimates.
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(a) Distribution of uncertainty estimates on images in the noisy datasets as a function of the bit flip
probability p. The density of uncertainties on each model is represented through opacity.
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(b) The average predictive probability, ŷ(x) and accuracy on images in the noisy family of datasets as a
function of the bit flip probability p.

Figure 4.2: Mean predictive probability and uncertainty on the noisy dataset as a function of bit-flip
probability p. We want to find a positive correlation between uncertainty and p. I observe this for BBB
and DBA; and that their median uncertainty appears to be positively related with the difference between
mean predictive probability and accuracy. However, median uncertainty for AoT-SNN appears to be
unrelated to both p and the difference between mean predictive probability and accuracy.

Of interest is the numerical difference between the uncertainty of BBB and DBA/AoT-SNN
in Figure 4.2. This numerical difference is due to the low initial standard deviation σ0

for BBB chosen in Section 3.6. This was chosen since low σ0 led to models which were
more performant according to the metrics identified in Section 3.5. Pure Bayesians require
uncertainty to be numerically interpretable i.e. externally meaningful. However, this project
focuses on generating internally meaningful uncertainty estimates and so I do not consider
this numerical difference problematic.

Notice how the uncertainty estimated by BBB varies. Initially, the median uncertainty was
6.89e−4 and dp, the difference between mean predictive probability and accuracy, was 1%.
However, at p = 0.01, dp increased to 14% and the median uncertainty instantly increased
by a factor of 17 to 1.18e−2. Median uncertainty continued to increase and remained
roughly proportional to dp. This is in-line with the expected behaviour of good uncertainty
estimates outlined above and is therefore a strong indication that the uncertainty estimates
produced by BSNNs trained through BBB are internally meaningful.

I observe similar results with DBA: the uncertainty increases until a saturation point, which
aligns with the desired behaviour. The model accuracy remains fairly high. While median
uncertainty seems to be positively correlated with the difference between mean predictive
probability and accuracy, this relation is weak. I therefore consider this experiment to only
give weak evidence that DBA is producing meaningful uncertainty estimates.
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Finally, I observe no obvious relationship between the uncertainty produced by AoT-SNN
and the difference between mean predictive probability and accuracy. This indicates that
AoT-SNN is not producing meaningful uncertainty estimates.

4.1.3 Can we use uncertainty to detect noisy data?
For uncertainty estimates to be practically useful, we must be able to use them for some
downstream task of interest. This section investigates whether a practitioner could use my
uncertainty estimates to differentiate between in-domain and noisy (OOD) data.

I investigate two subtasks which practitioners are likely to be interested in: maximising
classification accuracy and maximising accuracy of OOD identification subject to a 90%
coverage constraint (i.e. 90% of in-domain data must be classified as in-domain).

I consider each model and bit-flip probability p ∈ {0, 0.01, . . . , 0.2} separately. For each
model and p, I compute the uncertainty on both in-domain data and noisy data. I investigate
the first task by recording the accuracy of a classifier which classifies the least uncertain half
of datapoints as in-domain and the most uncertain half of datapoints as OOD (Figure 4.3).
To address the second task, I record the proportion of OOD data which is correctly labelled
as OOD by a classifier which labels examples as OOD if they have uncertainty greater
than 90% of in-domain examples (Figure 4.4).

Figures 4.3 and 4.4 shows the accuracies of these classifiers as a function of the bit-flip
probability p. I find that both BBB and DBA are performant on these tasks, indicating
they may be of practical use and suggesting that they generate meaningful uncertainty
estimates. The figures also show that the uncertainty from AoT-SNN cannot be used to
differentiate between in-distribution and noisy data.
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Figure 4.3: Accuracy when using uncertainty to
differentiate between in-domain and noisy data.
This assumes uncertainty is higher on noisy data.
I observe that BBB and DBA are performant
while AoT-SNN is not.
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Figure 4.4: Accuracy on the OOD identifica-
tion task using uncertainty to differentiate, and
subject to classifying 90% of in-domain data as
in-domain. Again, I find that BBB and DBA are
performant, while AoT-SNN is not.

4.1.4 All models are uncertain on random data
In Section 4.1.2, I demonstrated that uncertainty on BBB and DBA was higher when the
semantics of NMNIST was disrupted by noise. In addition to disrupting the semantics,
adding noise affected a much simpler property: it increased the number of spikes in the
input. This section investigates whether this, and not the disrupted semantics, was the cause
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of the increased uncertainty. I do this by investigating the uncertainty on a family of purely
random datasets. These datasets contain no semantic information and have characteristics
unlike the NMNIST dataset. We therefore desire the uncertainty to be constant with
respect to q for these datasets, with low predictive probability for all values of q.

To test whether my models have these properties, I generate random datasets with bit
flip probabilities q ∈ {0, 0.1, . . . , 0.2} and calculate the distribution of uncertainties for
each model. I visualise these distributions in Figure 4.5. I also compare the uncertainty on
these random datasets to that of NMNIST, in which 3.6% of input features spike.
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(a) Distribution of uncertainty for images in the family of random datasets as a function of their bit-flip
probability q. The distribution of uncertainties for the NMNIST dataset is shown through a violin plot.
The uncertainty of BBB and DBA on the random dataset is higher than on NMNIST. For AoT-SNN,
the uncertainty on NMNIST is higher than for random data. This suggests that BBB and DBA produce
meaningful uncertainty while AoT-SNN does not.
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(b) The mean predictive probability ŷ(x) on the datasets in the family of random datasets.

Figure 4.5: The behaviour of uncertainty and predictive probability on the family of random datasets.
The visualisation is explained in Figure 4.2.

Notice by comparing Figure 4.5 and Figure 4.2, that noisy data with low bit-flip probability
has a much lower uncertainty than random data with the same proportion of spikes. This
suggests that the cause of the increasing uncertainty in the noisy dataset is not the bit-flip
probability, but the increasing disruption to the semantic information.

4.1.5 BBB and DBA are uncertain on NCaltech
In Sections 4.1.2 and 4.1.4, I investigated uncertainty on synthetic datasets to establish how
disrupting information affects uncertainty. I now ask: how do the uncertainty estimates
behave if information is present in the data, but the model cannot understand it? To answer
this, I evaluate the uncertainty on a different neuromorphic dataset: NCaltech.

NCaltech shares no classes with NMNIST and has different low-level features (Figure 4.1).
This means that models trained on NMNIST should be unable to extract or represent
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information about images in the NCaltech dataset. I therefore expect the uncertainty for
models trained on NMNIST to be very high with a very low predictive probability.

I compute the distribution of uncertainties and predictive probabilities of each model on
NCaltech and show them in Figure 4.6. The predictive probabilities on the NCaltech dataset
are all far higher than the ideal equiprobable. However, I also notice that they are far
lower than the predictive probabilities for NMNIST. For BBB and DBA, the uncertainties
for NCaltech are far higher than the uncertainties for NMNIST and have roughly the same
distribution as for a pure random dataset with high bit-flip probability. The uncertainty
for NCaltech on AoT-SNN has decreased: contrary to the desirable behaviour.
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(a) Distribution of uncertainties generated by models on the NCaltech dataset. Observe that the uncertainty
of BBB and DBA greatly increases, while the uncertainty of AoT-SNN remains roughly constant.
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(b) Distribution of probabilities predicted by the uncertainty-generating models on the NCaltech dataset.
All models produced many high predictive probabilities, even the highly-calibrated BBB model.

Figure 4.6: The predictive probability and uncertainty of models on the NMNIST dataset (in-domain).
Green lines are the mean of the model on NMNIST, while orange lines are the means of the models on
NCaltech (out-of-domain). The NCaltech dataset is structured data but distinct from NMNIST so should
be semantically meaningless to models trained on NMNIST.

4.2 Are the models uncertain on adversarial examples?
A desirable property of meaningful uncertainty is that the uncertainty on adversarial
examples should be higher than on benign examples. If I demonstrate that my uncertainty
estimates have this property, it will provide strong evidence that they are meaningful
and may be practically useful. I am therefore interested in comparing the uncertainties of
adversarial examples and benign examples.

I am particularly interested in comparing adversarial examples to benign examples with
the same predictive probability. If the uncertainty on adversarial examples is higher than
on benign examples with the same predictive probability, then I can claim that the cause
of the increased uncertainty is their adversarial nature and not failed attacks.
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4.2.1 BBB is uncertain on adversarial examples
I wish to compare the uncertainty for benign and adversarial examples with the same
predictive probability. To do this, I use an adversarial attack for neuromorphic data
(described in Section 4.2.2) to generate adversarial examples. I then compute the predictive
probability and uncertainty on adversarial and benign examples.

A scatter plot of uncertainty against predictive probability would ideally show two lines.
The first line would be the uncertainty of benign examples. The second line would show the
uncertainty of adversarial examples and would be vertically above the first. Whilst overlap
is acceptable, these lines should be visually distinguishable. The predictive probabilities
and uncertainties of adversarial and benign examples are shown in Figure 4.7.
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Figure 4.7: A comparison of the predictive probability to the uncertainty for adversarial examples
generated using Algorithm 1. Notice that the uncertainty for high predictive probability adversarial
examples for the BBB model appears to be higher than the uncertainty for benign examples. The
adversarial example generation algorithm was insufficient and unable to generate adversarial examples for
AoT in this low-dimensional example.

By inspection of Figure 4.7a, BBB seems to have the desired behaviour: adversarial examples
for BBB appear to have higher uncertainty than benign examples having the same predictive
probability. However, neither DBA nor AoT-SNN appear to have noticeable differences in
uncertainty between adversarial examples and benign examples. The predictive probabilities
of adversarial examples on DBA and AoT-SNN are comparatively low for both models. This
appears to be partially due to a failure of the adversarial example generation algorithm,
so I am unable to make meaningful inference for DBA or AoT-SNN.

I investigate whether the uncertainty of adversarial examples on BBB is higher than
that of benign examples by performing a hypothesis test. I observe that for predictive
probabilities above 0.9, there is a roughly linear relationship between uncertainty and
predictive probability and propose that uncertainty is distributed according to a linear
model. With U

(d)
i as the uncertainty of example i belonging to dataset d ∈ {adv, benign},

I propose the model:

U
(d)
i ∼ N

(
m(d) · (1− Pi), (σ

(d) · (1− Pi))
2
)

where Pi is the predictive probability of example i. I use this to test whether the gradient
m(adv) is the same as m(benign). I non-parametrically resample a million datasets and find
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that none are as extreme as what I observed with BBB. By modelling the distribution of
these datasets as normal, I find that the uncertainty for adversarial examples is statistically
different to benign examples at p = 10−16.

4.2.2 Details of the adversarial dataset
To generate the adversarial examples analysed in Section 4.2.1, I replicated a paper which
implemented an attack on neuromorphic data. Neuromorphic data is a type of discrete
time series data. Since gradients are only locally valid, discrete data is often much harder
to attack and requires custom attacks. Liang et al. propose attacking neuromorphic data
by computing the gradients of the inputs with respect to the outputs and ‘normalising’
them to valid probabilities p ∈ [0, 1]. Bits in the input are then randomly flipped based on
this probability p. Simplified pseudocode for the attack is given in Algorithm 1.

Algorithm 1: Simplified version of the adversarial attack by Liang et al.. They use an
unspecified normalisation method: I find that normalising such that the sum of squared
probabilities within timesteps and channels is 1 generates good adversarial examples.
for i = 0, . . . , N do

δs ← ∇x(fθ(x))

p← normalise(δs) /* Unspecified normalisation method */
δmask ← Bernoulli(p)

x← clamp(x+ sign(δs · δmask), 0, 1)

end

Generalising for nondeterministic models The attack by Liang et al. attacks a single
neural network. However, I must target a probabilistic ensemble and so must generalise
their algorithm. Generalising the algorithm requires setting δs ← Eθ (∇x(fθ(x))). However,
approximating this would require many Monte Carlo samples: making it computationally
intractable. Instead, I propose using the approximation Eθ (∇x(fθ(x))) ≈ ∇x(fE(θ)(x)).
Using this approximation, I can explicitly construct a model whose weights are E(θ) and
calculate its gradients efficiently. I visualise adversarial examples generated through the
attack in Figure 4.8.

(a) Benign images (b) Adversarial images

Figure 4.8: Comparison of benign examples from the NMNIST dataset and adversarial examples generated
through Algorithm 1. Visualisation explained in Figure 3.9.
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An attack for uncertainty This attack aims to generate examples models incorrectly
output a high predictive probability on. It does not aim to generate examples with low
uncertainty. It may be possible to construct attacks which generate examples with high
predictive probability and low uncertainty.

4.3 Models are uncertain in few-shot settings
We want model uncertainty to decrease as the number of examples the model has seen
increases. In this section, I use few-shot learning to demonstrate that my uncertainty gener-
ation methods have this property. Specifically, I implement k-shot learning on the NMNIST
dataset with k ∈ {10, 50, 250, 1250, 5000} using the uncertainty-generating spiking Res-
Net18 architectures from Section 3.6.2. I use models trained in k-shot settings to generate
uncertainty estimates on the NMNIST test dataset. If the uncertainty estimates I generate
are meaningful, then models trained on more data should have lower uncertainty.

For each model trained on a dataset with k examples, I visualise its distribution through a
violin plot in Figure 4.9. Notice that the uncertainty of BBB and DBA decreases as the
dataset size increases, while the same does not hold for AoT-SNN.
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Figure 4.9: Violin plots showing the distribution of uncertainty estimates for each model. Notice that the
median uncertainty generated by BBB and DBA decreases as the number of datapoints in the training
dataset increases. I observe no relation between training dataset size k and AoT-SNN uncertainty.

Summary In this section, I achieved the second project goal of evaluating the quality of
uncertainty estimates. This required novel evaluation methodology. I empirically found
that Bayesian uncertainty estimation methods produce the most useful uncertainty.
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5 Conclusions

5.1 Achievements
The project met both project goals, completed numerous extensions and went far beyond
my initial expectations. As such, I deem the project successful. I implemented three types
of uncertainty-generating network; two of which have never been done before. This project
produced novel results for both the fields of uncertainty estimation and for SNNs.

Generating uncertainty The project began by inventing and implementing Bayesian
SNNs and deriving how to train them. From here, I used dropout to approximate Bayesian
inference on SNNs and implemented average-over-time SNNs. All three models were used to
generate plausible uncertainty on a 2D dataset. This achieved the first project goal.

Demonstrating meaning The project then moved onto achieving the second project
goal of demonstrating that the uncertainty estimates produced are meaningful. I did this by
making and training deep convolutional spiking neural networks on the NMNIST dataset
and comparing their uncertainty estimates on downstream tasks to the desired behaviour
of uncertainty estimates. From this, I was able to conclude that BSNNs and DBA produce
meaningful uncertainty while AoT-SNN does not.

Contributions to the field This project produced novel results for two fields: SNNs
and uncertainty estimation. This project generates the first uncertainty estimates on SNNs,
demonstrating that they are still able to represent uncertainty despite having discrete
internal state. This project helps to fill a gap in the uncertainty estimation literature by
proposing and implementing empirical methods for evaluating the quality of uncertainty
produced by a model.

5.2 Lessons Learnt
Falling behind can be okay The early stages of this project marked the first time I
have ever fallen significantly behind in anything important. Michaelmas courses and my
Michaelmas module took significantly longer than expected, and the project encountered
several inscrutable, undocumented bugs early on. I learnt that plans can change and falling
behind is okay if there is a realistic plan to catch back up.

Formalism For the first few months of the project, I put a lot of effort into formalising
every notion before attempting it. This meant months were spent on experiments which
(while aiding intuition) did not make significant contributions to the dissertation. In a
future project, I would aim to implement a minimum working example earlier to understand
the end-product first.

Adaptivity I started off with very clear ideas of how certain implementations (i.e. BSNN)
should work; and resisted change. An essential part of research is adapting implementations
when necessary.
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5.3 Future Work
During this project, I thought of many interesting research directions which fell far outside
the scope of this project. I summarise the two most important of these below:

SNN-specific Bayesian models This project focused on augmenting SNNs with exist-
ing uncertainty estimation methods known to have Bayesian interpretations. Future work
could instead investigate whether SNN-specific stochasticity has a Bayesian interpretation
and could be used to generate uncertainty estimates. I believe that firing spikes with prob-
ability dependent on the membrane potential, or randomly zeroing the membrane potential
may have a Bayesian interpretation and be able to produce meaningful uncertainty.

Efficient non-Bayesian uncertainty estimation One of the core results of this project
is that AoT-SNNs do not produce meaningful uncertainty. I conjecture that there exist
other non-Bayesian methods to produce meaningful uncertainty estimates both for ANNs
and SNNs. Specifically, I hypothesise that Bayesian models using some weight/state sharing
between samples could produce very weakly dependent samples in sub-quadratic time. I
believe that for some types of weight/state sharing, these samples will entail meaningful
uncertainty. Future work could implement and compare different methods of weight/state
sharing and evaluate how meaningful the uncertainty produced by different methods is.
Efficient uncertainty estimation could have implications for the adoption of uncertainty
estimation far beyond the field of SNNs.
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A Project Proposal

A.1 Introduction
Uncertainty Estimation has been a significant area in machine learning research – and
arguably the disciplines greatest failing. Substantial progress has been made – there are
many methods which work well, but all have some limitations: training many models [Lak-
shminarayanan et al., 2017]; training an entirely different class of models [Neal, 1995]; or
only working on networks which use dropout [Gal and Ghahramani, 2016]. As a result,
uncertainty estimation in neural networks has not been widely adopted and is still very
much an open problem with new methods emerging regularly. This leads to situations
where models are not adopted in places which would sorely benefit from them; or are overly
trusted in situations where they should not be. The lack of uncertainty in models has even
spawned an entire sub-discipline: adversarial attacks [Szegedy et al., 2014; Goodfellow
et al., 2015] – which itself led to many further interesting methods [Goodfellow et al.,
2014].

Spiking Neural Networks(SNNs) [Maass, 1997] are a relatively new take on the mechan-
ics underlying neural networks – their main appeal is their computational efficiency on
specialist hardware [Roy et al., 2019]. Rather than a single pass through a set of matrix
multiplications, SNNs have binary activations dramatically reducing the number of multi-
plications required. Data is passed through models multiple times – with layers storing
state from previous passes. This is very efficient on specialist hardware. Furthermore, SNNs
are approaching performance comparable to similar Artificial Neural Networks (ANNs) on
some benchmarks [Li et al., 2021]. It is therefore surprising that there has never been a
systematic investigation and evaluation of uncertainty estimation for SNNs. This project
aims to rectify that.

A.2 Core
This project aims to implement uncertainty estimation for SNNs and evaluate to what
extent existing methods known work on ANNs work in the context of SNNs. Namely, the
project shall:

• Use Monte Carlo Dropout-based Uncertainty Estimation (MCDU) [Gal and Ghahramani,
2016] to get uncertainty estimates for SNNs

• Transfer the ideas behind Bayesian Neural Networks (BNNs) [Neal, 1995] from ANNs
into the context of SNNs in order to create Bayesian Spiking Neural Networks
(BSNNs)

• Evaluate how well these uncertainty estimation methods work in this new context

A.2.1 MCDU
Dropout [Srivastava et al., 2014] zeroes each activation of a layer with probability p during
training, then uses all activations (rescaled by p) at inference time. This has been found to
cause neural networks to train better and can be interpreted as a form of model averaging.
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Gal and Ghahramani noticed that if dropout was considered as model averaging, then an
inference with a subset of activations zeroed could be considered as the result of inference
from a different model. They then showed that by using dropout at evaluation time, this led
to a distribution of outputs which could be viewed as an uncertainty estimate. Thus, they
obtained uncertainty estimates from networks without any additional compute overhead
at training time and with comparatively low additional inference cost. This method was
applied to the context of SNNs by Sun et al., who were able to get uncertainty estimates
on SNNs with minimal additional overhead at training time. The project will start off by
implementing MCDU for SNNs.

Success Criteria 1 (MCDU). The MCDU method has been employed on SNNs and
used to get uncertainty estimates.

A.2.2 BSNN
Many of the earlier attempts to get uncertainty estimates from Neural Networks involved the
use of BNNs [Neal, 1995]. In these networks, the parameters are modelled as a distribution.
Over the decades of research into uncertainty estimation via BNNs, many different types
of BNN have arisen. As part of the core of the project, I will investigate BNNs and aim to
use their ideas to create a BSNNs and then use it to get uncertainty estimates. Due to the
wide range of types of BNNs, there is a large range of possible routes (and corresponding
difficulties) which this stage of the project could take.

Success Criteria 2 (BSNNs). The ideas behind BNNs have been transferred into the
context of SNNs to create a BSNN and have been used to get uncertainty estimates.

A.2.3 Evaluate Quality
The purpose of uncertainty estimates is to accurately reflect the uncertainty of the model
which we are evaluating – which itself should accurately reflect the uncertainty of the
data. There has been significant research into this area and there exist many common
metrics [Chung et al., 2021]. Most of these can be fairly easily transferred from the SNN
literature onto SNNs. Many methods of evaluating uncertainty estimates are controver-
sial [Sluijterman et al., 2023] meaning that wider reading is required to establish the best
metrics to use for my specific case. In short: evaluating the quality of uncertainty estimates
is a well-researched and well-understood open problem with lots of available resources and
tools. This means that there are a wide range of evaluations which could be carried out;
and opens the opportunity for meta-evaluation. I consider this to be an advantage; giving
greater opportunity and justification for an interesting in-depth evaluation.

Part of my research phase will involve deciding on suitable evaluation metrics (such as
negative log-likelihood, continuous ranked probability score, check score, interval score etc.)
and datasets. Any datasets we evaluate on should both be small but be complex enough
to have large and easily measurable uncertainty – there are many datasets which fit these
criterion [Cohen et al., 2017; Krizhevsky and Hinton, 2009; mnmoustafa, 2017]. Investigation
is required to determine whether there are common datasets designed specifically for
uncertainty estimation. We can compare against the uncertainty estimation implementation
from Sun et al., and compare against how the methods work for ANNs with similar
performance.



A.3 Extensions 47

At minimum,there should be evaluation on synthetic datasets where the true uncertainty
is known, such as linear regression plus gaussian noise. I could either make such datasets
myself or use open source datasets [Kabir et al., 2023]. Using models for which the
“true uncertainty” is not known introduces complexities. These may be addressed by
using conventional uncertainty estimation techniques from ANN literature – such as deep
ensembles [Lakshminarayanan et al., 2017]. Note that the success criteria is met if the
implementations have been transferred onto SNNs and evaluated; regardless of how well
the methods works in this new context.

Success Criteria 3 (Quality). Suitable evaluation metrics have been found in the ANN
literature and used to evaluate how good the uncertainty estimates from our implementa-
tions of MCDU and BSNNs are.

A.3 Extensions
This project lends itself to a wide range of extensions. I anticipate that after having
completed the core of my project, I will have a better idea of which extensions will be the
most worthy. Here is a set of extensions I could do if the core tasks are met:

A.3.1 Get uncertainty estimates on a wider range of SNNs and
BNNs

There is a wide range of variants of both SNNs and BNNs. This leads to a vast set of
variants of BSNNs: the set of variants of BSNNs is the cartesian product of the variants of
SNNs and BNNs. It could be interesting to consider how different variants can affect the
quality of uncertainty estimates and the general characteristics of these BSNNs.

A.3.2 Evaluate on larger datasets and models
Since the core of the project aims to implement uncertainty estimation, it has no real
requirement for usage of large datasets or models. However, a rigorous evaluation would
include evaluation on larger [Deng et al., 2009] or real-world tasks with models of practical
size [Tan and Le, 2021; Howard et al., 2019; Liu et al., 2021]. As such, a possible extension
would be to scale up the experiment size to real datasets. This introduces a number of
complexities – and adds the potential for our methods to be compute bound.

A.3.3 Create a testbench designed for SNN uncertainty estima-
tion

It is well-known that SNNs are better suited for neuromorphic datasets [Iyer et al.,
2021] – data where the data is encoded in “spikes” and which allows them to use their
innate temporal aspect. It has been proposed that SNNs should be evaluated on separate
benchmarks in some cases [Deng et al., 2020] – it would be interesting to consider whether
this is the case for uncertainty estimation – and if so which datasets should be used. A
possible extension to this project would be to create a testbench for uncertainty estimation
which specifically uses datasets designed for SNNs.

A.3.4 Distribute a library for SNN uncertainty estimation
A core part of the motivation for this paper is that there has been little research in, and
are no open source implementations of SNN uncertainty estimation. A sensible extension
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would therefore be to distribute an open-source library with an emphasis on uncertainty
estimation in SNNs. Such a library would be built on top of PyTorch [Paszke et al., 2019]
and an open source SNN library [Pehle and Pedersen, 2021; Eshraghian et al., 2021]. This
should make future research in this area easier, as well as adding further credibility to our
results by making replication easier.

A.4 Starting Point
I have written no code pertaining to this project. I have prior experience with machine
learning – but neither with SNNs or BNNs. In preparation for this project, I read some
papers on SNNs and Uncertainty Estimation and worked through some tutorials on an
open source SNN library. The only prior experience I have with uncertainty estimation
comes from the Part IB Data Science Course – I expect this project to go far beyond
that. There exist separate open source libraries for SNNs, for BNNs and for uncertainty
estimation. However, to the best of my knowledge there is no open source code pertaining
to uncertainty estimation for SNNs.

A.5 Work Plan

A.5.1 Michaelmas Term
• 16th October 2023 – 27th October 2023

– Literature review, including papers on SNNs, papers on uncertainty estimation
and papers on BNNs

– Investigate and decide on suitable tools to use throughout the project e.g .
kanban boards, testing frameworks, linters, reference managers etc.

– Deliverable: Document summarizing how SNNs and BNNs work and a low
level summary of how we can extend them to uncertainty estimation

– Deliverable: List of tools identified to be used throughout the project

• 28th October 2023 – 10th November 2023

– Review the literature and decide on which metrics are most suitable for evalu-
ating the quality of uncertainty estimates

– Decide on suitable benchmarks and datasets (and get local copies) for use to
uncertainty estimation based on common practice in the uncertainty estimation
literature

– Create or obtain simple synthetic datasets with known uncertainty for quick
provisional evaluation of the quality of uncertainty estimation

– Make a simple testbench on which to evaluate the quality of uncertainty estim-
ates

– Deliverable: Testbench which evaluates the quality of uncertainty estimates
on simple datasets

• 11th November 2023 – 24th November 2023
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– Slack Time, start implementing MCDU if possible

– Commitment: Category Theory Graded Exercise Sheet

– Deliverable: Document outlining the approach to implementing a BSNNs

• 25th November 2023 – 8th December 2023

– Implement MCDU

– Deliverable: Working implementation of MCDU with provisional results on
synthetic test data

A.5.2 Michaelmas Vacation
• 9th December 2023 – 22nd December 2023

– Read papers on BNNs and determine how to implement BSNNs

– Implement BSNNs

– Deliverable: Document outlining the approach to implementing a BSNNs;
working BSNNs with provisional results on synthetic test data

• 23rd December 2023 – 4th January 2024

– Slack time, finish off any outstanding work if needed

– Break for Christmas

A.5.3 Lent Term
• 5th January 2024 – 19th January 2024

– Train networks on evaluation datasets

– Obtain uncertainty estimates from evaluation datasets

– Commitment: Category Theory Take-Home test

– Deliverable: Trained networks on evaluation datasets with uncertainty estim-
ates

• 20th January 2024 – 2nd February 2024

– Use evaluation metrics identified to evaluate the quality of the uncertainty
estimates

– Deliverable: Tables summarising the quality of the uncertainty estimates
obtained on a range of different metrics

– Deliverable: Completed Core

• 3rd February 2024 – 16th February 2024

– Slack Time, start working on extensions if possible

– Review which extensions are most interesting and update the work-plan accord-
ingly
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– Deliverable: Summary of extensions to attempt and updated work plan

• 17th February 2024 – 1st March 2024

– Work on extensions

– Deliverable: Extension-specific – specified in the updated work plan

• 2nd March 2024 – 15th March 2024

– Work on extensions

– Start writing the introduction and methodology chapters

– Deliverable: Extension-specific – specified in the updated work plan

A.5.4 Lent Vacation
• 16th March 2024 – 29th March 2024

– Work on extensions

– Finish the introduction and methodology chapter

– Commitment: Revision

– Deliverable: Introduction and Methodology completed

• 30th March 2024 – 12th April 2024

– Write the evaluation chapter

– Finish the first draft of the dissertation

– Commitment: Revision

– Deliverable: First draft of dissertation completed

A.5.5 Easter Term
• 13th April 2024 – 26th April 2024

– Revision

– Iterate on Dissertation

– Commitment: Revision

– Deliverable: second draft of Dissertation completed

• 27th April 2024 – 10th May 2024

– Final Correction and submit report

– Commitment: Revision

– Deliverable: Dissertation completed and submitted



A.6 Resource Declaration 51

A.6 Resource Declaration
I will use my personal laptop (Acer Swift 5 – i7-1165G7 2.80GHz, 8GB RAM) as my
primary working device, with an older HP laptop as backup. I shall use GitHub and
OneDrive to perform regular backups of my repository. I accept full responsibility for this
machine and I have made contingency plans to protect myself against hardware and/or
software failure.

I will need access to GPUs for training the models and performing uncertainty estimation.
I have access to GPUs in the CL from when I interned there; I anticipate using these and
have asked permission to do so. As a backup, I would rent GPUs (i.e. Google Colab) or
pay for HPC (i.e. Wilkes 3).
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